vor 4 Monaten


  • Text
  • Bioplastics
  • Products
  • Plastics
  • Materials
  • Applications
  • Biobased
  • Polymer
  • Fibre
  • Polymers
  • Properties

Basics PCL |

Basics PCL | Polycaprolactone, a synthetic (fossil based), biodegradable bioplastic, e.g. used as a blend component. PE | Polyethylene, thermoplastic polymerised from ethylene. Can be made from renewable resources (sugar cane via bio-ethanol) [bM 05/10] PET | Polyethylenterephthalate, transparent polyester used for bottles and film PGA | Polyglycolic acid or Polyglycolide is a biodegradable, thermoplastic polymer and the simplest linear, aliphatic polyester. Besides ist use in the biomedical field, PGA has been introduced as a barrier resin [bM 03/09] PHA | Polyhydroxyalkanoates are linear polyesters produced in nature by bacterial fermentation of sugar or lipids. The most common type of PHA is → PHB. PHB | Polyhydroxybutyrate (better poly-3-hydroxybutyrate), is a polyhydroxyalkanoate (PHA), a polymer belonging to the polyesters class. PHB is produced by micro-organisms apparently in response to conditions of physiological stress. The polymer is primarily a product of carbon assimilation (from glucose or starch) and is employed by micro-organisms as a form of energy storage molecule to be metabolized when other common energy sources are not available. PHB has properties similar to those of PP, however it is stiffer and more brittle. PHBH | Polyhydroxy butyrate hexanoate (better poly 3-hydroxybutyrate-co-3-hydroxyhexanoate) is a polyhydroxyalkanoate (PHA), Like other biopolymers from the family of the polyhydroxyalkanoates PHBH is produced by microorganisms in the fermentation process, where it is accumulated in the microorganism’s body for nutrition. The main features of PHBH are its excellent biodegradability, combined with a high degree of hydrolysis and heat stability. [bM 03/09, 01/10, 03/11] PLA | Polylactide or Polylactic Acid (PLA), a biodegradable, thermoplastic, linear aliphatic polyester based on lactic acid, a natural acid, is mainly produced by fermentation of sugar or starch with the help of micro-organisms. Lactic acid comes in two isomer forms, i.e. as laevorotatory D(-)lactic acid and as dextrorotary L(+)lactic acid. In each case two lactic acid molecules form a circular lactide molecule which, depending on its composition, can be a D-D-lactide, an L-L-lactide or a meso-lactide (having one D and one L molecule). The chemist makes use of this variability. During polymerisation the chemist combines the lactides such that the PLA plastic obtained has the characteristics that he desires. The purity of the infeed material is an important factor in successful polymerisation and thus for the economic success of the process, because so far the cleaning of the lactic acid produced by the fermentation has been relatively costly [12]. Modified PLA types can be produced by the use of the right additives or by a combinations of L- and D- lactides (stereocomplexing), which then have the required rigidity for use at higher temperatures [13] [bM 01/09] Plastics | Materials with large molecular chains of natural or fossil raw materials, produced by chemical or biochemical reactions. PPC | Polypropylene Carbonate, a bioplastic made by copolymerizing CO 2 with propylene oxide (PO) [bM 04/12] Renewable Resources | agricultural raw materials, which are not used as food or feed, but as raw material for industrial products or to generate energy Saccharins or carbohydrates | Saccharins or carbohydrates are name for the sugar-family. Saccharins are monomer or polymer sugar units. For example, there are known mono-, di- and polysaccharose. → glucose is a monosaccarin. They are important for the diet and produced biology in plants. Semi-finished products | plastic in form of sheet, film, rods or the like to be further processed into finshed products Sorbitol | Sugar alcohol, obtained by reduction of glucose changing the aldehyde group to an additional hydroxyl group. S. is used as a plasticiser for bioplastics based on starch. Starch | Natural polymer (carbohydrate) consisting of → amylose and → amylopectin, gained from maize, potatoes, wheat, tapioca etc. When glucose is connected to polymerchains in definite way the result (product) is called starch. Each molecule is based on 300 -12000-glucose units. Depending on the connection, there are two types → amylose and → amylopectin known. [bM 05/09] Starch derivate | Starch derivates are based on the chemical structure of → starch. The chemical structure can be changed by introducing new functional groups without changing the → starch polymer. The product has different chemical qualities. Mostly the hydrophilic character is not the same. Starch-ester | One characteristic of every starch-chain is a free hydroxyl group. When every hydroxyl group is connect with ethan acid one product is starch-ester with different chemical properties. Starch propionate and starch butyrate | Starch propionate and starch butyrate can be synthesised by treating the → starch with propane or butanic acid. The product structure is still based on → starch. Every based → glucose fragment is connected with a propionate or butyrate ester group. The product is more hydrophobic than → starch. Sustainable | An attempt to provide the best outcomes for the human and natural environments both now and into the indefinite future. One of the most often cited definitions of sustainability is the one created by the Brundtland Commission, led by the former Norwegian Prime Minister Gro Harlem Brundtland. The Brundtland Commission defined sustainable development as development that ‘meets the needs of the present without compromising the ability of future generations to meet their own needs.’ Sustainability relates to the continuity of economic, social, institutional and environmental aspects of human society, as well as the non-human environment). Sustainability | (as defined by European Bioplastics e.V.) has three dimensions: economic, social and environmental. This has been known as “the triple bottom line of sustainability”. This means that sustainable development involves the simultaneous pursuit of economic prosperity, environmental protection and social equity. In other words, businesses have to expand their responsibility to include these environmental and social dimensions. Sustainability is about making products useful to markets and, at the same time, having societal benefits and lower environmental impact than the alternatives currently available. It also implies a commitment to continuous improvement that should result in a further reduction of the environmental footprint of today’s products, processes and raw materials used. Thermoplastics | Plastics which soften or melt when heated and solidify when cooled (solid at room temperature). Thermoplastic Starch | (TPS) → starch that was modified (cooked, complexed) to make it a plastic resin Thermoset | Plastics (resins) which do not soften or melt when heated. Examples are epoxy resins or unsaturated polyester resins. Vinçotte | independant certifying organisation for the assessment on the conformity of bioplastics WPC | Wood Plastic Composite. Composite materials made of wood fiber/flour and plastics (mostly polypropylene). Yard Waste | Grass clippings, leaves, trimmings, garden residue. References: [1] Environmental Communication Guide, European Bioplastics, Berlin, Germany, 2012 [2] ISO 14067. Carbon footprint of products - Requirements and guidelines for quantification and communication [3] CEN TR 15932, Plastics - Recommendation for terminology and characterisation of biopolymers and bioplastics, 2010 [4] CEN/TS 16137, Plastics - Determination of bio-based carbon content, 2011 [5] ASTM D6866, Standard Test Methods for Determining the Biobased Content of Solid, Liquid, and Gaseous Samples Using Radiocarbon Analysis [6] SPI: Understanding Biobased Carbon Content, 2012 [7] EN 13432, Requirements for packaging recoverable through composting and biodegradation. Test scheme and evaluation criteria for the final acceptance of packaging, 2000 [8] Wikipedia [9] ISO 14064 Greenhouse gases -- Part 1: Specification with guidance..., 2006 [10] Terrachoice, 2010, [11] Thielen, M.: Bioplastics: Basics. Applications. Markets, Polymedia Publisher, 2012 [12] Lörcks, J.: Biokunststoffe, Broschüre der FNR, 2005 [13] de Vos, S.: Improving heat-resistance of PLA using poly(D-lactide), bioplastics MAGAZINE, Vol. 3, Issue 02/2008 [14] de Wilde, B.: Anaerobic Digestion, bioplastics MAGAZINE, Vol 4., Issue 06/2009 62 bioplastics MAGAZINE [05/13] Vol. 8

Suppliers Guide 1. Raw Materials AGRANA Starch Thermoplastics Conrathstrasse 7 A-3950 Gmuend, Austria Tel: +43 676 8926 19374 Showa Denko Europe GmbH Konrad-Zuse-Platz 4 81829 Munich, Germany Tel.: +49 89 93996226 DuPont de Nemours International S.A. 2 chemin du Pavillon 1218 - Le Grand Saconnex Switzerland Tel.: +41 22 171 51 11 Fax: +41 22 580 22 45 Evonik Industries AG Paul Baumann Straße 1 45772 Marl, Germany Tel +49 2365 49-4717 Shandong Fuwin New Material Co., Ltd. Econorm ® Biodegradable & Compostable Resin North of Baoshan Road, Zibo City, Shandong Province P.R. China. Phone: +86 533 7986016 Fax: +86 533 6201788 Mobile: +86-13953357190 CNMHELEN@GMAIL.COM Jincheng, Lin‘an, Hangzhou, Zhejiang 311300, P.R. China China contact: Grace Jin mobile: 0086 135 7578 9843 Europe contact(Belgium): Susan Zhang mobile: 0032 478 991619 1.1 bio based monomers Corbion Purac Arkelsedijk 46, P.O. Box 21 4200 AA Gorinchem - The Netherlands Tel.: +31 (0)183 695 695 Fax: +31 (0)183 695 604 1.2 compounds API S.p.A. Via Dante Alighieri, 27 36065 Mussolente (VI), Italy Telephone +39 0424 579711 Kingfa Sci. & Tech. Co., Ltd. No.33 Kefeng Rd, Sc. City, Guangzhou Hi-Tech Ind. Development Zone, Guangdong, P.R. China. 510663 Tel: +86 (0)20 6622 1696 FLEX-162 Biodeg. Blown Film Resin! Bio-873 4-Star Inj. Bio-Based Resin! GRAFE-Group Waldecker Straße 21, 99444 Blankenhain, Germany Tel. +49 36459 45 0 Natur-Tec ® - Northern Technologies 4201 Woodland Road Circle Pines, MN 55014 USA Tel. +1 763.225.6600 Fax +1 763.225.6645 PolyOne Avenue Melville Wilson, 2 Zoning de la Fagne 5330 Assesse Belgium Tel.: + 32 83 660 211 WinGram Industry CO., LTD Great River(Qin Xin) Plastic Manufacturer CO., LTD Mobile (China): +86-13113833156 Mobile (Hong Kong): +852-63078857 Fax: +852-3184 8934 Email: 1.3 PLA Shenzhen Esun Ind. Co;Ltd Tel: +86-755-2603 1978 1.4 starch-based bioplastics Simply contact: Tel.: +49 2161 6884467 Stay permanently listed in the Suppliers Guide with your company logo and contact information. For only 6,– EUR per mm, per issue you can be present among top suppliers in the field of bioplastics. For Example: Polymedia Publisher GmbH Dammer Str. 112 41066 Mönchengladbach Germany Tel. +49 2161 664864 Fax +49 2161 631045 Sample Charge: 39mm x 6,00 € = 234,00 € per entry/per issue Sample Charge for one year: 6 issues x 234,00 EUR = 1,404.00 € The entry in our Suppliers Guide is bookable for one year (6 issues) and extends automatically if it’s not canceled three month before expiry. FKuR Kunststoff GmbH Siemensring 79 D - 47 877 Willich Tel. +49 2154 9251-0 Tel.: +49 2154 9251-51 Limagrain Céréales Ingrédients ZAC „Les Portes de Riom“ - BP 173 63204 Riom Cedex - France Tel. +33 (0)4 73 67 17 00 Fax +33 (0)4 73 67 17 10 bioplastics MAGAZINE [05/13] Vol. 8 63

bioplastics MAGAZINE ePaper